skip to main content


Search for: All records

Creators/Authors contains: "Viswanathan, Mahesh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Deadlocks are one of the most notorious concurrency bugs, and significant research has focused on detecting them efficiently. Dynamic predictive analyses work by observing concurrent executions, and reason about alternative interleavings that can witness concurrency bugs. Such techniques offer scalability and sound bug reports, and have emerged as an effective approach for concurrency bug detection, such as data races. Effective dynamic deadlock prediction, however, has proven a challenging task, as no deadlock predictor currently meets the requirements of soundness, high-precision, and efficiency.

    In this paper, we first formally establish that this tradeoff is unavoidable, by showing that (a) sound and complete deadlock prediction is intractable, in general, and (b) even the seemingly simpler task of determining the presence of potential deadlocks, which often serve as unsound witnesses for actual predictable deadlocks, is intractable. The main contribution of this work is a new class of predictable deadlocks, called sync(hronization)-preserving deadlocks. Informally, these are deadlocks that can be predicted by reordering the observed execution while preserving the relative order of conflicting critical sections. We present two algorithms for sound deadlock prediction based on this notion. Our first algorithm SPDOffline detects all sync-preserving deadlocks, with running time that is linear per abstract deadlock pattern, a novel notion also introduced in this work. Our second algorithm SPDOnline predicts all sync-preserving deadlocks that involve two threads in a strictly online fashion, runs in overall linear time, and is better suited for a runtime monitoring setting.

    We implemented both our algorithms and evaluated their ability to perform offline and online deadlock-prediction on a large dataset of standard benchmarks. Our results indicate that our new notion of sync-preserving deadlocks is highly effective, as (i) it can characterize the vast majority of deadlocks and (ii) it can be detected using an online, sound, complete and highly efficient algorithm.

     
    more » « less
    Free, publicly-accessible full text available June 6, 2024
  2. Happens before-based dynamic analysis is the go-to technique for detecting data races in large scale software projects due to the absence of false positive reports. However, such analyses are expensive since they employ expensive vector clock updates at each event, rendering them usable only for in-house testing. In this paper, we present a sampling-based, randomized race detector that processes onlyconstantly manyevents of the input trace even in the worst case. This is the firstsub-lineartime (i.e., running ino(n) time wherenis the length of the trace) dynamic race detection algorithm; previous sampling based approaches like run in linear time (i.e.,O(n)). Our algorithm is a property tester for -race detection — it is sound in that it never reports any false positive, and on traces that are far, with respect to hamming distance, from any race-free trace, the algorithm detects an -race with high probability. Our experimental evaluation of the algorithm and its comparison with state-of-the-art deterministic and sampling based race detectors shows that the algorithm does indeed have significantly low running time, and detects races quite often.

     
    more » « less
  3. We present a scalable methodology to verify stochastic hybrid systems for inequality linear temporal logic (iLTL) or inequality metric interval temporal logic (iMITL). Using the Mori–Zwanzig reduction method, we construct a finite-state Markov chain reduction of a given stochastic hybrid system and prove that this reduced Markov chain is approximately equivalent to the original system in a distributional sense. Approximate equivalence of the stochastic hybrid system and its Markov chain reduction means that analyzing the Markov chain with respect to a suitably strengthened property allows us to conclude whether the original stochastic hybrid system meets its temporal logic specifications. Based on this, we propose the first statistical model checking algorithms to verify stochastic hybrid systems against correctness properties, expressed in iLTL or iMITL. The scalability of the proposed algorithms is demonstrated by a case study. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)